Задание 22 из ОГЭ по математике: задача 106
Постройте график функции $y={x^4-13x^2+36} / {(x-2)(x+3)}$ и определите, при каких значениях параметра $a$ прямая $y=a$ имеет с графиком ровно одну общую точку.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.
Постройте график функции $y=|x^2-2x-8|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно четыре общие точки.
1. $p=0$
2. $p=9$
3. $p∈(9; +∞)$
4. $p∈(0; 9)$