Задание 16 из ОГЭ по математике: задача 17
Центральный угол $BOC$ опирается на хорду $BC$ длиной $12$. При этом угол $OBC$ равен $60^°$ (см. рис.). Найдите радиус окружности.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Два угла вписанного в окружность четырёхугольника равны $75^°$ и $92^°$ (см. рис.). Найдите меньший из оставшихся углов. Ответ дайте в градусах.
Треугольник $ABC$ вписан в окружность с центром в точке $O$. Точки $C$ и $O$ лежат в одной полуплоскости относительно прямой $AB$ (см. рис.). Найдите угол $ACB$, если угол $AOB$ равен $110^°$. Отв…
В треугольнике $ABC$ $AC=4$, $BC=3$, угол $C$ равен $90^°$ (см. рис.). Найдите радиус вписанной окружности.