Задание 24 из ОГЭ по математике: задача 3

Разбор сложных заданий в тг-канале:

В остроугольном треугольнике $BCD$ проведены высоты $CC_1$ и $DD_1$. Докажите, что углы $CDD_1$ и $CC_1D_1$ равны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Докажите, что AM=CN, если в параллелограмме ABCD диагонали пересекаются в точке O, через которую проведена прямая, пересекающая стороны AB и CD в точках M и N соответственно.

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!