Задание 22 из ОГЭ по математике: задача 107
Определите наибольшее целое значение $a$, при котором корни уравнения $ax^2-4x+2=0$ имеют разные знаки.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(-x+3y-6)^2+(x-y+2)^2$? В ответ запишите значение переменной $x$.
При каких значениях $a$ неравенство $x^2+(a+1)x+3/4a+7/4≤0$ не имеет решений?
1. $a∈(-2; 3)$
2. $a∈(0; 3)$
3. $a∈(3; 5)$
4. Решений нет
Найдите все значения $k$, при каждом из которых прямая $y=kx$ имеет с графиком функции $y=-x^2-4$ ровно одну общую точку. Постройте этот график и все такие прямые.