Задание 25 из ОГЭ по математике: задача 28
В окружности радиуса $17{,}5$ проведены диаметр $AB$, хорды $AC$ и $CB$, перпендикуляр $CD$ к диаметру $AB$. Найдите сумму длин хорд $AC$ и $CB$, если $AC:AD=5:3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…
В треугольнике $ABC$ на его медиане $BN$ отмечена точка $M$ так, что $BM:MN=5:2$. Прямая $AM$ пересекает сторону $BC$ в точке $T$. Найдите отношение площади треугольника $ABM$ к площади четырёхуго…
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?