Задание 24 из ОГЭ по математике: задача 36

Разбор сложных заданий в тг-канале:

Высоты $LL_1$ и $NN_1$ остроугольного треугольника $LNO$ пересекаются в точке $F$. Докажите, что углы $LL_1N_1$ и $LNN_1$ равны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания $AB$ и $CD$ трапеции $ABCD$ равны соответственно $6$ и $24$, $AC=12$. Докажите, что треугольники $ABC$ и $ACD$ подобны .

В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.

В выпуклом четырёхугольнике $MNPQ$ углы $NPM$ и $NQM$ равны. Докажите, что углы $MNQ$ и $MPQ$ также равны.

В параллелограмме MNPQ сторона MN в два раза меньше стороны NP. Точка Z – середина стороны MQ. Докажите, что NZ – биссектриса.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!