Задание 12 из ЕГЭ по математике (база): задача 312
Хорды окружности $AC$ и $BD$ перпендикулярны и пересекаются в точке $P$. $PH$ — высота треугольника $ADP$. Угол $ADP=30°$, $AH=2$, $PC=6$. Найдите отношение площади треугольника $ADC$ к площади треугольника $ABC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружности по разные стороны от диаметра $AB$ взяты точки $D$ и $C$. Известно, что $∠ABC = 38°$. Найдите угол $CDB$. Ответ дайте в градусах.
В параллелограмме ABCD проведена биссектриса угла B, пересекающая сторону AD в точке L. Найдите LD, если периметр параллелограмма равен 32, а сторона CD равна 6.