Задание 12 из ЕГЭ по математике (база): задача 207

Разбор сложных заданий в тг-канале:

В прямоугольном треугольнике $ABC$ внешний угол при вершине $B$ равен $112°$, $∠ C$ — острый (см. рис.). Медиана $AO$ пересекает сторону $BC$ в точке $O$. Найдите угол $AOC$. Ответ выразите в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания равнобедренной трапеции 26 и 56, боковая сторона равна 25. Найдите высоту трапеции.

Основания равнобедренной трапеции 12 и 28, боковая сторона равна 17. Найдите высоту трапеции.

В параллелограмме ABCD проведена биссектриса угла B, пересекающая сторону AD в точке L. Найдите LD, если периметр параллелограмма равен 32, а сторона CD равна 6.

В трапеции $ABCD$ известно, что $AB = CD, ∠BDA = 35°, ∠BDC = 25°$. Найдите угол $ABD$. Ответ дайте в градусах.

Составим твой персональный план подготовки к ЕГЭ

Хочу!