Задание 12 из ЕГЭ по математике (база): задача 406

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 45 сек.

Острые углы прямоугольного треугольника равны $27^°$ и $63^°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах (см. рис.).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.

В треугольнике ABC известно, что AB = BC = 61, AC = 22. Найдите длину медианы.

В треугольнике ABC AC = 17, BM медиана, BD высота, AB = BM. Найдите длину отрезка CD.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!