Задание 12 из ЕГЭ по математике (база): задача 407

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 45 сек.

Острые углы прямоугольного треугольника равны $27^°$ и $63^°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах (см. рис.).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.

В параллелограмме ABCD проведена биссектриса угла B, пересекающая сторону AD в точке L. Найдите LD, если периметр параллелограмма равен 32, а сторона CD равна 6.

Основания равнобедренной трапеции 12 и 28, боковая сторона равна 17. Найдите высоту трапеции.

В выпуклом четырёхугольнике $LMNK$ известно, что $LM = MN, LK = KN, ∠M = 64°, ∠K = 122°$. Найдите угол $N$. Ответ дайте в градусах.