Задание 12 из ЕГЭ по математике (база): задача 342
Точки $A$, $B$, $C$, $D$, расположенные на окружности, являются вершинами четырёхугольника $ABCD$. Градусные величины углов $A$, $B$ и $D$ относятся соответственно как $5:2:6$ (см. рис.). Найдите угол $C$ четырёхугольника $ABCD$. Ответ дайте в градусах.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Стороны параллелограмма равны 16 и 20. Высота, опущенная на меньшую сторону, равна 15. Найдите длину высоты, опущенной на большую сторону параллелограмма.
В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке F. Найдите FC, если AB = 5, а периметр параллелограмма равен 24.
В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.