Задание 12 из ЕГЭ по математике (база): задача 343

Разбор сложных заданий в тг-канале:

Точки $A$, $B$, $C$, $D$, расположенные на окружности, являются вершинами четырёхугольника $ABCD$. Градусные величины углов $A$, $B$ и $D$ относятся соответственно как $5:2:6$ (см. рис.). Найдите угол $C$ четырёхугольника $ABCD$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В параллелограмме ABCD проведена биссектриса угла B, пересекающая сторону AD в точке L. Найдите LD, если периметр параллелограмма равен 32, а сторона CD равна 6.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.

В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.

Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.