Задание 1 из ЕГЭ по математике (база). Страница 14
Определите синус острого угла параллелограмма, если его высоты равны $5$ и $7$, а периметр равен $48$.
Определите тангенс острого угла параллелограмма, если его высоты равны $3√ {2}$ и $5√ {2}$, а периметр равен $32$.
Дан ромб $ABCD$ c острым углом при вершине $A$. Площадь ромба равна $135$, а $\sin∠ A={3} / {5}$. Высота $DK$ пересекает диагональ $AC$ в точке $L$. Найдите длину отрезка $DL$.
В параллелограмме $ABCD$ $AB=20$, $\sin C={3} / {5}$. Высота, опущенная из вершины $B$, пересекает сторону $AD$ в точке $H$. Найдите площадь треугольника $ABH$.
В параллелограмме $ABCD$ $AB=20$, $\cos A={4} / {5}$. Высота, опущенная из вершины $D$, пересекает сторону $BC$ в точке $H$. Найдите площадь треугольника $CDH$.
Диагонали четырёхугольника равны $6$ и $9$ (см. рис.). Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного четырёхугольника.
Средняя линия трапеции равна 10 и делит площадь трапеции в отношении $3:5$. Найдите длину большего основания трапеции.
В равнобедренной трапеции длины оснований 21 и 9, а длина высоты 8. Найдите диаметр описанной около трапеции окружности.
В трапецию $ABCD$ с прямым углом $BAD$ вписана окружность радиуса $5$. Найдите среднюю линию трапеции, если угол между ней и боковой стороной $CD$ трапеции равен $30°$.
В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $18$ и $16$ соответственно. На диагонали $AC$ как на диаметре построена окружность, пересекающая прямую $AB$ в точке $K$. Найдит…
В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $12$ и $10$ соответственно. Найдите площадь трапеции, если $∠ CAB$ в два раза меньше $∠ ABD$.
Прямоугольная трапеция описана около окружности. Точка касания делит боковую сторону трапеции на отрезки длиной $2$ и $8$. Найдите периметр трапеции.
В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $3$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $AOB$ равна $6$. Найдите площадь трапеции.
В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ …
Диагонали трапеции взаимно перпендикулярны, а длина её средней линии равна $9$. Найдите длину отрезка, соединяющего середины оснований трапеции.
Основания равнобедренной трапеции равны $7$ и $17$ соответственно, боковые стороны равны $13$. Найдите тангенс острого угла трапеции.