Задание 8 из ЕГЭ по математике (профиль): задача 123

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 5 сек.

Функция $y=f(x)$ определена на промежутке $(-5;5)$. На рисунке изображён график производной этой функции. К графику функции $y=f(x)$ провели касательные во всех точках, абсциссы которых — положительные целые числа. Укажите количество точек графика функции $y=f(x)$, в которых проведённые касательные имеют отрицательный угловой коэффициент.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

На рисунке изображён график $y=f'(x)$ производной функции $f(x)$. Найдите абсциссу точки, в которой касательная к графику $y=f(x)$ параллельна оси абсцисс или совпадает с ней.

Прямая $y=3x+14$ является касательной к графику функции $y= x^3+6x^2+3x-18$. Найдите абсциссу точки касания.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…