Задание 8 из ЕГЭ по математике (профиль): задача 134

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 58 сек.

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-7; 14)$. Найдите количество точек экстремума функции $f(x)$, принадлежащих отрезку $[-6; 9]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y=f(x)$. Функция $F(x)=x^3+6x^2+13x+4$ — одна из первообразных функции $f(x)$. Найдите площадь заштрихованной фигуры.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

На рисунке (см. с. ) изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 7)$. В какой точке отрезка $[-3; 2]$ $f(x)$ принимает наименьшее значение?