Задание 8 из ЕГЭ по математике (профиль): задача 163

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 37 сек.

На рисунке изображён график производной функции $y=f'(x)$, определённой на интервале $(-5;5)$. Найдите количество точек экстремума функции $f(x)$ на отрезке $[-4;3]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график производной функции $y=f'(x)$, определённой на отрезке $(-7{,}5;7)$. В какой точке отрезка $[-5;-2]$ функция $f(x)$ принимает наименьшее значение?

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…

На рисунке изображён график производной функции $f(x)$, определённой на интервале $(-8;7)$. В какой точке отрезка $[-7;-2]$ $f(x)$ принимает наименьшее значение?

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!