Задание 8 из ЕГЭ по математике (профиль): задача 165

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 32 сек.

На рисунке изображён график дифференцируемой функции $y=f(x)$. На оси абсцисс отмечены семь точек: $x_1$, $x_2$, … $x_7$. Среди этих точек найдите все точки, в которых производная функции $f(x)$ отрицательна. В ответе запишите количество найденных точек.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

Материальная точка движется прямолинейно по закону
$x(t)={1} / {3}t^3-{5} / {2}t^2-3t+7$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала дви…

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5;8)$. Найдите точку экстремума функции $f(x)$, принадлежащую отрезку $[-3;7]$.

На рисунке изображён график производной функции $y=f'(x)$, определённой на отрезке $(-7{,}5;7)$. В какой точке отрезка $[-5;-2]$ функция $f(x)$ принимает наименьшее значение?