Задание 1 из ЕГЭ по математике (профиль): задача 259

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 18 сек.

В треугольнике $ABC$ $AD$, $BE$ и $CF$ — биссектрисы, пересекающиеся в точке $O$. Найдите угол $AOF$, если $∠ EBC=35°$, $∠ A=32°$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

В треугольнике $MNK$ известно, что $MK=NK$, $MN=4{,}8$, $\sin M={21} / {29}$ (см. рис.). Найдите $MK$.

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана…

Стороны параллелограмма равны 8 и 16. Высота, опущенная на первую из этих сторон, равна 14. Найдите высоту, опущенную на вторую сторону параллелограмма.