Задание 1 из ЕГЭ по математике (профиль): задача 162
В равнобедренном треугольнике биссектриса, проведённая к боковой стороне, делит её в отношении $5:8$, считая от вершины. Найдите длину основания данного треугольника, если радиус его вписанной окружности равен $2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основа…