Задание 1 из ЕГЭ по математике (профиль): задача 161

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 26 сек.

В равнобедренном треугольнике биссектриса, проведённая к боковой стороне, делит её в отношении $5:8$, считая от вершины. Найдите длину основания данного треугольника, если радиус его вписанной окружности равен $2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

Основания равнобедренной трапеции равны 20 и 50, а её боковые стороны равны 17. Найдите площадь трапеции.

Площадь параллелограмма $ABCD$ равна $324$.Точка $P$ - середина стороны $BC$. Найдите площадь трапеции $APCD$.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.