Задание 1 из ЕГЭ по математике (профиль): задача 127

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 27 сек.

Острые углы прямоугольного треугольника равны $38°$ и $52°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла (см. рис.). Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $150°$. Найдите боковую сторону треугольника, если его площадь равна 324.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

В треугольнике $ABC$ угол $A$ равен $67^°$, а углы $B$ и $C$ — острые. $BD$ и $CE$ — высоты, пересекающиеся в точке $O$ (см. рис.). Найдите угол $DOE$. Ответ дайте в градусах.