Задание 1 из ЕГЭ по математике (профиль): задача 126

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 27 сек.

Острые углы прямоугольного треугольника равны $38°$ и $52°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла (см. рис.). Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Стороны параллелограмма равны 8 и 16. Высота, опущенная на первую из этих сторон, равна 14. Найдите высоту, опущенную на вторую сторону параллелограмма.

В треугольнике $ABC$ сторона $AC$ равна стороне $BC$, $AB=12$ и $\tg ∠ BAC={3√ {7}} / {7}$
(см. рис.). Найдите высоту $AH$.

Площадь параллелограмма $ABCD$ равна $324$.Точка $P$ - середина стороны $BC$. Найдите площадь трапеции $APCD$.

В четырёхугольнике $ABCD$ стороны $AB, BC, CD$ и $AD$ стягивают дуги описанной окружности, градусные величины которых равны соответственно $75°, 84°, 51°, 150°$. Найдите угол $B$ этого четыр…