Задание 1 из ЕГЭ по математике (профиль): задача 128

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 27 сек.

Острые углы прямоугольного треугольника равны $38°$ и $52°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла (см. рис.). Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

В треугольнике $ABC$ угол $A$ равен $67^°$, а углы $B$ и $C$ — острые. $BD$ и $CE$ — высоты, пересекающиеся в точке $O$ (см. рис.). Найдите угол $DOE$. Ответ дайте в градусах.