Задание 8 из ЕГЭ по математике (профиль): задача 129

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 34 сек.

На рисунке изображён график функции $y=f(x)$ и десять точек на оси абсцисс: $x_1$, $x_2$, $x_3$, … $x_{10}$. В скольких из этих точек производная функции $f(x)$ отрицательна?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону $x(t) = -t^{4} +7t^{3} +6t+16$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. Н…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$, где $x$ - расстояние от точки отсчета в метрах, $t$ -  время в секундах, измеренное с начала движен…

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-7; 8)$. Найдите, в какой точке отрезка $[-4; 4]$ функция принимает наибольшее значение.

На рисунке изображён график $y=f'(x)$ производной функции $f(x)$ и девять точек на оси абсцисс: $x_1, x_2, x_3, …, x_9$. Сколько из этих точек принадлежит промежуткам возрастания функции…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!