Задание 8 из ЕГЭ по математике (профиль): задача 33
На рисунке изображён график $y=f'(x)$ производной функции $f(x)$ и девять точек на оси абсцисс: $x_1, x_2, x_3, …, x_9$. Сколько из этих точек принадлежит промежуткам возрастания функции $f(x)$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На рисунке (см. с. ) изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 7)$. В какой точке отрезка $[-3; 2]$ $f(x)$ принимает наименьшее значение?
На рисунке изображён график некоторой функции $y=f(x)$ (два луча с общей начальной точкой). Пользуясь рисунком, вычислите $F(1)-F(-7)$, где $F(x)$ — одна из первообразных функции $f(x)$.
Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движен…