Задание 19 из ЕГЭ по математике (профиль): задача 7

Разбор сложных заданий в тг-канале:

Имеется уравнение $kx^2+mx+q =0 $, числа $k$, $m$, $q$ — целые, $k≠0$. а) Возможно ли, что уравнение имеет два различных корня, ровно один из которых является целым числом, если известно, что $m=-50$ и $q=600$? б) Найдите все возможные значения $k$, если $m=k$, $q=30$ и уравнение имеет два различных целых корня? в) Известно, что $k^2+m^2+q^2=150$, причём $m$ и $q$ имеют разные знаки, а уравнение имеет два различных целых корня. Найдите все возможные значения корней.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего. Сумма все…

Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …

Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, ко…

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!