Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

В $▵ ABC$ $∠ A=30°$, точка $O$ — центр вписанной в $▵ ABC$ окружности. Прямые $AO$ и $BO$ п…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 36 сек.

В $▵ ABC$ $∠ A=30°$, точка $O$ — центр вписанной в $▵ ABC$ окружности. Прямые $AO$ и $BO$ пересекают описанную вокруг $▵ ABC$ окружность в точках $M$ и $N$ соответственно. Найдите величину угла $C$ в градусах, если известно, что $AM=MN$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Площадь треугольника ABC равна 76, DE - средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

В треугольнике $ABC$ угол $C$ прямой, $AC=9$, $\sin A={4} / {5}$ (см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\cos A={6} / {7}$ (см. рис.). Найдите $AB$.