Задание 15 из ЕГЭ по информатике: задача 43
Пусть ДЕЛ(n, m) - утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа А формула
ДЕЛ(x, А) → (ДЕЛ(x, 33) + ДЕЛ(x, 55))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?
Объект авторского права ООО «Легион»
Бесплатный интенсив по информатике
- 📚 Узнаешь о специфике ЕГЭ на компьютерах
- 📚 Научишься применять тайм-менеджмент в подготовке
- 📚 Научишься решать самое интересное задание ЕГЭ из первой части
- 📚 Отдельно разберём с вами алгебру логики, а также решение 2 задания
Вместе с этой задачей также решают:
Для какого наибольшего целого неотрицательного числа А выражение
(34 ≠ 2y + 3x) ⋁ (A < x) ⋁ (A < y)
тождественно истинно (то есть принимает значение 1 при любых неотрицательных значениях перемен…
Даны множества P = {7, 9, 11, 22, 78, 90, 111}, Q = {7, 11, 16, 34, 78, 90, 154} и A. Элементами множества являются натуральные числа. Известно, что выражение
((x ∈ P) → ((x ∈ Q) ∧…
Элементами множеств A, P и Q являются натуральные числа, причём:
- P = {3, 5, 7, 8, 9, 11, 15, 28}
- Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}
Известно, что выражение:
…