Задание 25 из ОГЭ по математике: задача 29
К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AM$ проходит через центр окружности и пересекает ее в точках $M$ и $N$. Найдите квадрат расстояния от точки $B$ до прямой $AN$, если $AM=1$, $AB=√ {3}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В выпуклом четырёхугольнике $NPLM$ диагональ $NL$ является биссектрисой угла $PNM$ и пересекается с диагональю $PM$ в точке $T$. Найдите $NT$, если известно, что около четырёхугольника $NPLM$ мо…
В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.
Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…