Задание 24 из ОГЭ по математике: задача 20
В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Высоты $MM_1$ и $NN_1$ остроугольного треугольника $MNP$ пересекаются в точке $A$. Докажите, что $MA⋅ M_1A=NA⋅ N_1A$.
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
Известно, что около четырёхугольника $LMTP$ можно описать окружность и что продолжения сторон $PT$ и $ML$ четырёхугольника пересекаются в точке $K$. Докажите, что треугольники $KMT$ и $KLP$ по…