Задание 12 из ЕГЭ по математике (база): задача 271

Разбор сложных заданий в тг-канале:

Острые углы прямоугольного треугольника равны $38°$ и $52°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла (см. рис.). Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике ABC проведена биссектриса AD, угол ADC равен $120°$, угол ABC равен $87°$. Найдите угол ACB. Ответ дайте в градусах.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.

В треугольнике ABC известно, что AB = BC = 61, AC = 22. Найдите длину медианы.

В окружности по разные стороны от диаметра $AB$ взяты точки $D$ и $C$. Известно, что $∠ABC = 38°$. Найдите угол $CDB$. Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!