Задание 12 из ЕГЭ по математике (база): задача 232
В $▵ ABC$ $∠ A=30°$, точка $O$ — центр вписанной в $▵ ABC$ окружности. Прямые $AO$ и $BO$ пересекают описанную вокруг $▵ ABC$ окружность в точках $M$ и $N$ соответственно. Найдите величину угла $C$ в градусах, если известно, что $AM=MN$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.
В треугольнике ABC проведена биссектриса CL, угол ALC равен $108°$, угол ABC равен $72°$. Найдите угол BAC. Ответ дайте в градусах.
В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.