Задание 12 из ЕГЭ по математике (база): задача 233
В равнобедренном треугольнике биссектриса, проведённая к боковой стороне, делит её в отношении $5:8$, считая от вершины. Найдите длину основания данного треугольника, если радиус его вписанной окружности равен $2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $ABCD$ известно, что $AB = CD, ∠BDA = 35°, ∠BDC = 25°$. Найдите угол $ABD$. Ответ дайте в градусах.
В выпуклом четырёхугольнике $ABCD$ известно, что $AB = BC, AD = CD, ∠B = 85°, ∠D = 131°$. Найдите угол $A$. Ответ дайте в градусах.
В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.