Задание 12 из ЕГЭ по математике (база): задача 353

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 38 сек.

Найдите угол $ACB$, если вписанные углы $AMB$ и $MAK$ опираются на дуги окружности, градусные величины которых равны соответственно $106^°$ и $42^°$ (см. рис.). Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Четырёхугольник вписан в окружность. Угол ADC равен $100°$, угол CAD равен $61°$. Найдите угол ABD. Ответ дайте в градусах.

В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.

В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.