Задание 12 из ЕГЭ по математике (база): задача 297

Разбор сложных заданий в тг-канале:

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $18$ и $16$ соответственно. На диагонали $AC$ как на диаметре построена окружность, пересекающая прямую $AB$ в точке $K$. Найдите длину $AK$, если известно, что $∠ CAB$ в два раза меньше $∠ ABD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.

В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке F. Найдите FC, если AB = 5, а периметр параллелограмма равен 24.

Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.

В треугольнике ABC проведена биссектриса AD, угол ADC равен $120°$, угол ABC равен $87°$. Найдите угол ACB. Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!