Задание 12 из ЕГЭ по математике (база): задача 297
В трапецию $ABCD$ с прямым углом $BAD$ вписана окружность радиуса $5$. Найдите среднюю линию трапеции, если угол между ней и боковой стороной $CD$ трапеции равен $30°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике ABC AB = BC. Внешний угол при вершине A равен $152°$. Найдите угол B. Ответ дайте в градусах.
В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.
Четырёхугольник вписан в окружность. Угол ADC равен $100°$, угол CAD равен $61°$. Найдите угол ABD. Ответ дайте в градусах.