Задание 12 из ЕГЭ по математике (база): задача 226
В треугольнике $ABC$ медианы $AD$ и $BE$ пересекаются под прямым углом. Найдите сторону $AB$ этого треугольника, если $AC=30$ и $BC=12√ {5}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В выпуклом четырёхугольнике $ABCD$ известно, что $AB = BC, AD = CD, ∠B = 85°, ∠D = 131°$. Найдите угол $A$. Ответ дайте в градусах.
В трапеции $ABCD$ известно, что $AB = CD, ∠BDA = 35°, ∠BDC = 25°$. Найдите угол $ABD$. Ответ дайте в градусах.
В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.