Задание 12 из ЕГЭ по математике (база): задача 302
В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ — точка пересечения продолжений боковых сторон трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.
В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.