Задание 12 из ЕГЭ по математике (база): задача 303

Разбор сложных заданий в тг-канале:

Диагонали трапеции взаимно перпендикулярны, а длина её средней линии равна $9$. Найдите длину отрезка, соединяющего середины оснований трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В окружности по разные стороны от диаметра $AC$ взяты точки $B$ и $D$. Известно, что $∠BAC = 41°$. Найдите угол $ADB$. Ответ дайте в градусах.

В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке F. Найдите FC, если AB = 5, а периметр параллелограмма равен 24.

Прямые a и b параллельны. Найдите угол 2, если угол 1 равен $70°$, а угол 3 равен $71°$. Ответ дайте в градусах.

В треугольнике ABC проведена биссектриса AD, угол ADC равен $120°$, угол ABC равен $87°$. Найдите угол ACB. Ответ дайте в градусах.

Составим твой персональный план подготовки к ЕГЭ

Хочу!