Задание 12 из ЕГЭ по математике (база): задача 137
Точка пересечения биссектрис углов $B$ и $C$ параллелограмма $ABCD$ принадлежит стороне $AD$. Меньшая сторона параллелограмма равна $3,\!2$. Найдите его большую сторону.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.
В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.