Задание 12 из ЕГЭ по математике (база): задача 138

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 22 сек.

Точка пересечения биссектрис углов $B$ и $C$ параллелограмма $ABCD$ принадлежит стороне $AD$. Меньшая сторона параллелограмма равна $3,\!2$. Найдите его большую сторону.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите площадь ромба, если его высота равна 3, а острый угол равен $30°$.

В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.

В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.

Прямые a и b параллельны. Найдите угол 2, если угол 1 равен $70°$, а угол 3 равен $71°$. Ответ дайте в градусах.

Составим твой персональный план подготовки к ЕГЭ

Хочу!