Задание 8 из ЕГЭ по математике (профиль): задача 95

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 8 сек.

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-9;7)$. Найдите количество точек максимума функции $f(x)$ на отрезке $[-8;6]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

Прямая $y=-5x+19$ является касательной к графику функции $y= x^3-3x^2-2x+18$. Найдите абсциссу точки касания.

На рисунке изображён график функции $y=F(x)$ — одной из первообразных функции $f(x)$, определённой на интервале $(-6; 7)$. Найдите количество решений уравнения $f(x)=0$ на отрезке $[-3; 4]$.…