Задание 12 из ЕГЭ по математике (профиль): задача 64

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 48 сек.

Найдите наибольшее значение функции $y=x^2-8x+6\ln x+19$ на отрезке $[{15} / {17};{19} / {17}]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите наибольшее значение функции
$y=5\ln (x+5)-5x+11$ на отрезке $[-4{,}8;0]$.

Найдите точку минимума функции $y={4} / {3}x√ {x}-6x+3$.

Найдите точку минимума функции $y=(5-x)e^{5-x}$.

Рассмотрите функцию $y = 5^{x^{2}-8x+19}$ и найдите её наименьшее значение.