Задание 1 из ЕГЭ по математике (профиль): задача 264

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 6 сек.

Острые углы прямоугольного треугольника равны $37°$ и $53°$. Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В треугольнике $ABC$ угол $C$ равен $90^°$, катет $AC=16$, $\sin A={3} / {5}$ (см. рис.). Найдите $AB$.

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Угол $CAB$ равен $54^°$. Найдите угол $AOB$. Ответ дайте в градусах.