Задание 1 из ЕГЭ по математике (профиль): задача 30

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 29 сек.

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана такая точка $E$, что $CE = CB$. Найдите угол $BDE$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ прямой, $AC=9$, $\sin A={4} / {5}$ (см. рис.). Найдите $AB$.

Основания равнобедренной трапеции равны 15 и 43. Косинус острого угла трапеции равен 0.7. Найдите боковую сторону.

В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.