Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Найдите наименьшее значение функции $y = 32 tg x - 32x - 8π + 103$ на отрезке $[-{π}/{4};{π}/{4}]$.…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 15 сек.

Найдите наименьшее значение функции $y = 32 tg x - 32x - 8π + 103$ на отрезке $[-{π}/{4};{π}/{4}]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку минимума функции $y=(5-x)e^{5-x}$.

Найдите наименьшее значение функции $y = 2x^3 + 9x^2 - 60x + 5$ на отрезке $[-1.5; 11]$.

Найдите точку максимума функции $y=(5x-14)\sin x+5\cos x-4$, принадлежащую интервалу $({π} / {2};π)$.

Найдите точку минимума функции $y=5√ x-12\ln(x-1)+7$.