Треугольник $ABC$ вписан в окружность радиуса $√ {2}$. Его вершины делят окружность…
Треугольник $ABC$ вписан в окружность радиуса $√ {2}$. Его вершины делят окружность на три части в отношении $1:2:3$. Найдите сторону правильного треугольника, площадь которого равна площади треугольника $ABC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите площадь прямоугольной трапеции, основания которой равны $16$ и $22$, большая боковая сторона составляет с основанием угол $45°$.
В треугольнике $ABC$ угол $A$ равен $75^°$, угол $C$ равен $35^°$, $AM$ — биссектриса, $T$ — такая точка на $AC$, что $AT = AB$. Найдите угол $CMT$. Ответ дайте в градусах.