Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Треугольник $ABC$ вписан в окружность радиуса $√ {2}$. Его вершины делят окружность…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 12 сек.

Треугольник $ABC$ вписан в окружность радиуса $√ {2}$. Его вершины делят окружность на три части в отношении $1:2:3$. Найдите сторону правильного треугольника, площадь которого равна площади треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

Найдите площадь прямоугольной трапеции, основания которой равны $16$ и $22$, большая боковая сторона составляет с основанием угол $45°$.

В треугольнике $ABC$ угол $A$ равен $75^°$, угол $C$ равен $35^°$, $AM$ — биссектриса, $T$ — такая точка на $AC$, что $AT = AB$. Найдите угол $CMT$. Ответ дайте в градусах.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\tg A=0{,}7$ (см. рис.). Найдите $BC$.