Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пе…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 5 сек.

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ — точка пересечения продолжений боковых сторон трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания равнобедренной трапеции равны 8 и 22. Косинус острого угла трапеции равен 0.4. Найдите боковую сторону.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.