Задание 15 из ОГЭ по математике: задача 43

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 26 сек.

В параллелограмме $ABCD$ диагонали $AC$ и $BD$ пересекаются в точке $O$. Сторона $AD=11$, а расстояние от точки $O$ до этой стороны равно $4$ (см. рис.). Найдите площадь параллелограмма.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=8$, $\cos A={4} / {7}$. Найдите $AB$.

В треугольнике $ABC$ $NP$ — средняя линия. Площадь треугольника $ABC$ равна $40$ (см. рис.). Найдите площадь треугольника $NPC$.

Сумма двух углов равнобедренной трапеции равна $240^°$. Найдите меньший угол трапеции. Ответ дайте в градусах.

В треугольнике $ABC$ угол $B$ равен $94^°$. Найдите внешний угол при вершине $B$. Ответ дайте в градусах

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!