Задание 12 из ЕГЭ по математике (база): задача 64
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основанию (см. рис.). Найдите периметр треугольника.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.
В треугольнике ABC AB = BC. Внешний угол при вершине A равен $152°$. Найдите угол B. Ответ дайте в градусах.