Задание 12 из ЕГЭ по математике (база): задача 235
В равнобедренном треугольнике $ABC$ с равными сторонами $AC$ и $CB$ и углом при вершине $C$, равным $120°$, проведены биссектрисы $AM$ и $BN$. Найдите длину биссектрисы $BN$, если площадь четырёхугольника $ANMB$ равна $12{,}25$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.
В трапеции $ABCD$ известно, что $AB = CD, ∠BDA = 35°, ∠BDC = 25°$. Найдите угол $ABD$. Ответ дайте в градусах.
В выпуклом четырёхугольнике $ABCD$ известно, что $AB = BC, AD = CD, ∠B = 85°, ∠D = 131°$. Найдите угол $A$. Ответ дайте в градусах.