Многогранники
Многогранник – это поверхность, составленная из многоугольников, ограничивающая некоторое геометрическое тело.
В данной теме мы рассмотрим составные многогранники (многогранники, состоящие обычно из нескольких параллелепипедов).
Объемы различных многогранников:
- Призма
- Пирамида
- Параллелепипед , где и - длина, ширина и высота.
- Куб , где - сторона куба
Задачи на нахождение объема составного многогранника:
- Первый способ.
- Составной многогранник надо достроить до полного параллелепипеда или куба.
- Найти объем параллелепипеда.
- Найти объем лишней части фигуры.
- Вычесть из объема параллелепипеда объем лишней части.
Пример:
Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).
Решение:
1. Достроим составной многогранник до параллелепипеда.
Найдем его объем. Для этого перемножим все три измерения параллелепипеда:
2. Найдем объем лишнего маленького параллелепипеда:
Его длина равна
Ширина равна
Высота равна
3. Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры:
Ответ:
- Второй способ
- Разделить составной многогранник на несколько параллелепипедов.
- Найти объем каждого параллелепипеда.
- Сложить объемы.
Задачи на нахождение площади поверхности составного многогранника.
- Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:
Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.
Пример:
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).
Представим данный многогранник как прямую призму с высотой равной .
Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:
Далее подставим все данные в формулу и найдем площадь поверхности многогранника
Ответ:
- Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Задачи на нахождение расстояния между точками составного многогранника.
В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Бесплатный интенсив по математике (база)
- Изучишь основы основ, которые помогут в дальнейшей подготовке к ЕГЭ.
- Полюбишь и поймешь геометрию, ведь мы ее будем разбирать с самых начал.
- Разберем 5 заданий из ЕГЭ по базовой математике.
- Порешаем реальные задания из ЕГЭ.
Что тебя ждет?
- 8 вебинаров (1 вебчик в неделю по 1 часу).
- Домашка после каждого веба, без дедлайна, лето все-таки.
- Скрипты и конспекты, полезные материалы к каждому занятию.
- Личный кабинет Турбо.
- Тренажёр для отработки заданий.
- Домашняя атмосфера на вебах и эффективная подготовка.