Задание 12 из ЕГЭ по математике (профиль): задача 48

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 3 сек.

Найдите наименьшее значение функции
$y=15x-15\ln (x+11)+4$ на отрезке $[-10{,}5;8]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y=3^{9x-x^2}$.

Найдите точку минимума функции $y=(5-x)e^{5-x}$.

Найдите точку минимума функции $y=5√ x-12\ln(x-1)+7$.

Найдите точку максимума функции $y = (4x - 5) cos x - 4 sin x + 12$, принадлежащую промежутку $(0;{π}/{2})$.