Задание 1 из ЕГЭ по математике (профиль): задача 94

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 19 сек.

Хорды окружности $AC$ и $BD$ перпендикулярны и пересекаются в точке $P$. $PH$ — высота треугольника $ADP$. Угол $ADP=30°$, $AH=2$, $PC=6$. Найдите отношение площади треугольника $ADC$ к площади треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

Окружность, вписанная в равнобедренный треугольник $ABC$, касается боковой стороны в точке $K$ (см. рис.). Найдите длину отрезка $CK$, если известно, что периметр треугольника равен $36$ и…

Найдите площадь ромба, если его диагонали равны $3√ {7}$ и $12√ {7}$.

В треугольнике $ABC$ угол $A$ равен $75^°$, угол $C$ равен $35^°$, $AM$ — биссектриса, $T$ — такая точка на $AC$, что $AT = AB$. Найдите угол $CMT$. Ответ дайте в градусах.