Задание 1 из ЕГЭ по математике (профиль): задача 95

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 21 сек.

Хорды окружности $AC$ и $BD$ перпендикулярны и пересекаются в точке $P$. $PH$ — высота треугольника $ADP$. Угол $ADP=30°$, $AH=2$, $PC=6$. Найдите отношение площади треугольника $ADC$ к площади треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=10$, $\tg A=0{,}3$ (см. рис.). Найдите $BC$.

В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=3$, $\cos A={4} / {5}$ (см. рис.). Найдите $AB$.

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.