Задание 1 из ЕГЭ по математике (профиль): задача 332

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 4 сек.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны $12$ и $5$, считая от вершины, противолежащей основанию (см. рис.). Найдите периметр треугольника.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана…

Площадь параллелограмма $ABCD$ равна $324$.Точка $P$ - середина стороны $BC$. Найдите площадь трапеции $APCD$.

Найдите площадь прямоугольной трапеции, основания которой равны $16$ и $22$, большая боковая сторона составляет с основанием угол $45°$.