Задание 1 из ЕГЭ по математике (профиль): задача 333

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 35 сек.

Точки $A$, $B$, $C$, $D$, расположенные на окружности, делят эту окружность на четыре дуги $AB$, $BC$, $CD$ и $AD$, градусные величины которых относятся соответственно как $5:3:4:6$ (см. рис.). Найдите угол $C$ четырёхугольника $ABCD$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Площадь параллелограмма ABCD равна 226. Точка P - середина стороны AD. Найдите площадь треугольника CDP.

Найдите площадь ромба, если его диагонали равны $3√ {7}$ и $12√ {7}$.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.