Задание 1 из ЕГЭ по математике (профиль): задача 334
Точки $A$, $B$, $C$, $D$, расположенные на окружности, делят эту окружность на четыре дуги $AB$, $BC$, $CD$ и $AD$, градусные величины которых относятся соответственно как $5:3:4:6$ (см. рис.). Найдите угол $C$ четырёхугольника $ABCD$. Ответ дайте в градусах.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основа…
Два угла треугольника равны $48^°$ и $64^°$ (см. рис.). Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.
В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.